Kill the Stigma! Teacher Expectancy in the Information Literacy Classroom

Kathleen Langan

What would happen if we were to consciously and carefully provide experiences that would lead people to conceptions of themselves as able, worthy, acceptable, loved and wanted?[...] What kind of society might we produce if we were honestly to set ourselves the task of designing experiences to challenge children without threatening them?"1

In 1979, Arthur Combs, author of the above quote, asks educators to envision a learning environment rich with confidence. When talking to colleagues from different disciplines and across various institutions, there is a pervasive concern regarding the ill preparedness of incoming college students. Confidence in student performance is low. Those stereotypes and assumptions warrant our attention and are not to be ignored. These anticipatory beliefs held by the teaching faculty hold regarding student performance have negative impacts on the learning environment. Unrealistic or inaccurate expectations set in motion an environment of inequitable learning that often result in self-fulfilling prophecies evident in student performance. Those teaching information literacy are not exempt from these learning stigmas and when looking more specifically at student preparedness in the information literacy classroom, results from a recent case study confirm that a critical percentage of students are entering college with far less research and writing experience in high school than one would expect.2 The discrepancy in student preparedness and teacher expectations on performance can create a bias in the classroom. The term bias invokes no limit to how prejudicial actions and dispositions can manifest themselves, but it is important to remember that bias is not always as overt as inequitable treatment of students based on class, physical appearance, or socioeconomic standing. Bias also finds foothold in teacher attitudes and expectations of student performance, known as “teacher expectancy.” Bias can find its foothold in teacher attitudes and expectations of student performance, known as “teacher expectancy.” In my own experience, I realized I was relying on some very dated and inaccurate assumptions of student behavior and experience. I found myself assessing students ad nauseam, with an attitude of “It’s you, not me.” Still unsatisfied with the effectiveness of my teaching, I shifted the blame away from the students and back on to me. An “It’s me, not you” attitude forced me to look at my teacher expectancies and biases, an uncomfortable process with many rewards including a more confident classroom for both teacher and students. This paper aims to bring awareness to the impact of teacher bias in an information literacy classroom and is a contribution to an on-going conversation about the discrepancies between student preparedness and performance and teacher expectations vis-à-vis the role of critical thinking in higher education and the proposed ACRL framework.

Kathleen Langan is Humanities Librarian, Western Michigan University, e-mail: kathleen.langan@wmich.edu
Teacher Expectancy: A Review of Literature

Background and Definitions

The phenomenon of “teacher expectancy” has been a focus of research for much of the 20th century. As Robert Rosenthal reports in “Pygmalion in the Classroom,” the phenomenon of a self-fulfilling prophecy in a sociological context was made by Merton in 1948. Prior to that, the concept of a self-fulfilling prophecy had only been applied in a clinical context by Albert Moll in the late nineteenth century. The phenomenon emerged in the education setting in the mid-twentieth century. In the late 1960s, Rosenthal’s own research in trying to link “experimenter bias” to bias in the classroom, identified that the self-fulfilling prophecy cycle may actually be a product of a teacher’s expectations, that students will only reach the level of expectation set forth by the teacher rather than a self-imposed expectation. Rosenthal describes it as the “Pygmalion Effect” which is “how one person’s expectations for another person’s behavior can quite unwittingly become a more accurate prediction simply for its having been made.” The “Pygmalion Effect” takes into account both positive (Galatea) and negative (Golem) effects.

The methodology of the Rosenthal study, “The Harvard Test of Inflected Acquisition,” later known as “The Pygmalion Study,” included giving teachers inaccurate information indicating first and second graders’ intellectual competence and potential. At the end of the school year, Rosenthal measured to see if those students actually did learn more. They found that there was a correlation to teacher expectations and student performance. “Overall, the children from whom the teachers had been led to expect greater intellectual gain showed a significantly greater gain than did the children of the control group, thereby supporting the “Pygmalion Hypothesis.” The study and findings had strong reactions and was considered controversial since there was repeated failure to duplicate the effect. During next several decades, the definition and identity of the “Pygmalion Effect” morphed into its current theory of “teacher expectancy,” the teacher’s unconscious actions and beliefs that hinder teaching and learning by imposing either accurate or inaccurate expectancies on students’ abilities. Do students learn more if teachers’ behavior, attitude, and/or bias is corrected, modified, or eradicated?

Theories Related to “Teacher Expectancy”

When looking at “teacher expectancy,” it is helpful to mention the other closely related theories of teaching and learning. TE accounts for only a portion of the teaching and learning ecosystem dealing with bias. There are many other manifestations of internal and external biases that complete the intricate learning environment.

The “Coleman Report” and institutional barriers: School quality has little consequences for student learning. “The researchers found that academic achievement was less related to the quality of a student’s school, and more related to the social composition of the school, the student’s sense of control of his environment and future, the verbal skills of teachers, and the student’s family background.”

Emotional labor of teaching: The relationships between students and teachers impact their interaction. It is fair to say that the one-shot information literacy model creates a severe deficit in the student/teacher relationship, therefore impeding a meaningful student/teacher bond.

Halo effect: An instructor’s assumptions of one student are applied to the entire class. A student is “guilty by association.”

Impostor phenomenon: “The term impostor phenomenon is used to designate an internal experience of intellectual phonies, which appears to be particularly prevalent and intense among a select sample of high achieving women.” In other words, self-imposed expectancies hinder performance.

Spotlight effect: The phenomenon “that people overestimate the extent to which their actions and appearance are noted by others.”

Stereotype threat: Students bring their own baggage and their behavior reinforces those negative stereotypes. There is some research that links the phe-
nomenon of stereotype threat to the phenomenon of library anxiety.16

Stigma consciousness: One's awareness of negative stereotypes.17 Students bring their own baggage, person's expectations of being judged, victimized.

Assessment of “Teacher Expectancy”
Once the phenomenon of “teacher expectancy” was identified, a multitude of studies followed, attempting to measure the characteristics and factors that led to a predisposition or susceptibility, such as gender, race, nationality, age.18 Babad, et al. argue that some teachers are more susceptible to transmitting expectancies than others. They measured that susceptibility affects 25% of teachers.19 Teachers least likely to transmit “teacher expectancy” exhibited the following characteristics: democratic, open-minded, flexible, equitable, balanced, and friendly.20 Babad finds that a teacher’s age is more of a predictor of expectancies than a teacher’s education.21

Teaching styles also contribute to the propensity to transmit a high bias and a strong Golem effect is also found in particular teaching styles, such as those teachers who were more dogmatic and authoritarian in their attitudes and subsequent behavior towards students who were identified as having low potential.22 Harris and Rosenthal, (1973) identified four behaviors that transmit teacher expectancy, either positively or negatively.23 They include: 1. creating a warm classroom climate, 2. providing positive feedback such as praise, 3. providing relevant opportunities for student “input,” i.e. developing appropriate challenging class materials, and 4. forthcoming in appropriate teacher output by way of prompts. Common classroom management mistakes also contribute to a high bias environment. For example trying to cover too much material, over emphasis or unbalanced reinforcement of incorrect answers, delay in reacting to student input, no follow through or partial follow through with consequences, dealing with problems in the classroom, inappropriate or poorly timed (such as in the classroom as opposed to waiting for privacy) consequences.24

One might think that the one-shot information literacy classroom is a low-bias environment. But, one-shot instruction sessions lack a working relationship between the teacher and the student. “To be vital, to produce genuine thinking and relative habits of mind, education …requires opportunities of give-and-take, in some degree of intimacy between the student as an individual and teachers who themselves exhibit a spirit of inquiry, rational deliberation, of intellectual creativity, of honest judgment.”25 Teaching librarians may not have enough of a rapport with the students. Teaching librarians might risk leaning towards the halo effect of teacher expectancies, assuming that a particular trait for one to be true for all. Classroom management is also an issue in the one-shot session as it affords little room to execute follow-through or consequences.

What Are We Really Teaching? Is Critical Thinking Still the Hallmark of American Higher Education?
While reflecting on “teacher expectancies,” I also scrutinized the discrepancy in expectations of materials to be covered in information literacy sessions. Rather than focus on skills, I taught to the more conceptual aspects of research that include problem solving and higher-level knowledge execution. In other words, I was teaching critical thinking.26 Yet students were reluctant to this material. The discrepancy I witnessed in my classroom echoed a known predisposition to a lack of commitment on the student’s behalf. “Many students come to college not only poorly prepared by prior schooling for highly demanding academic tasks that ideally lie in front of them, but—more troubling—they enter college with attitudes, norms, values, and behaviors that are often at odds with academic commitment…”27 Students are capable of adapting to a higher level of performance but are not receptive. The tendency to teach specific information literacy skills rather than concepts is an example of and continues the erosion of critical thinking’s place in the core mission of higher education. Do we ignore the discrepancy and teach to their wants? As Goheen
asked in 1969, do we want to produce generations of graduates who are “unconcerned with the fundamental principles on which their specialties rest?” or do we want to encourage questioning, “informed by intelligence and conscience”?

Critical thinking is not new to the central mission of higher education, in fact, it’s been at the core of higher education’s mission since its inception in Europe. Focus on this mission started to blur over the centuries. In 2005, in an address to the American Association of University Professors regarding student academic freedom, Professor Joan Scott states that good teachers “inspire students to think differently about the world; … It is precisely the experience of this kind of education that opens students’ minds and engages them in learning, sets them out on paths they never knew they could take. That has been the critical thinking that is the hallmark of American education—an education designed to create thinking citizens for a free society.” Recently, loyalty to teaching critical thinking has been gravely weakened by the demands for accreditation, graduation rates, student retention, and assessment.

Student Aptitude and Attitudes, Past and Present

If critical thinking is “primarily an attitude about ideas, a disposition toward knowing,” then our job as teaching librarians is to cultivate that disposition in our students. A fairly recent history of students show that they want more pragmatic, applied instruction at the university rather than the more and supposedly detached from reality theoretical teachings. Factors that work against the mission of teaching critical thinking is data confirming that students are coming into college with such inadequate levels of preparation that they must spend much of their early coursework in remedial education classes where “gains in higher-order critical thinking and complex reasoning are unlikely to occur.” There is also evidence that suggests that college students’ academic effort has dramatically declined in recent decades. Lack of focus, less time for classes, selection of less rigorous courses… paired with a prevalent “college for all” attitude contribute to academic rigorousness. “High school students expect to enroll in college and complete bachelor’s degrees, even when they are poorly prepared to do so judging from their grade point averages, high school rank, and courses taken.” As one student puts it, “even if I don’t work hard in high school, I can still make my future plans come true.” It has been argued that college has been made easier and that we are lowering the bar for student performance. For example, there is grade inflation, lighter workload, buying papers online, and college credit for high school coursework or tests. “Education should not be intended to make people comfortable, it is meant to make them think. Universities should be expected to provide the conditions within which hard thought, and therefore strong disagreement, independent judgment, and the questioning of stubborn assumptions, can flourish in an environment of the greatest freedom.” If teachers remove these bias and expectations by way of stereotypes, perhaps it will help students create a more positive identity of themselves and therefore help students achieve more. “Since people behave in terms of what they believe about themselves, such labels may also become self-fulfilling.” On a more positive note, and working in favor of attitudes on student performance is that today’s student is more connected globally. Access to an ever-expanding universe of knowledge allows them to be less isolated. “Students are more serious and more aware of the outside world,” which creates higher stakes and increases motivation to succeed. The questions that remains is, how does this manifest in the information literacy classroom and how can we apply what we know about our students to create an environment free of bias?

Teaching Librarian Survey Methodology, Results and Discussion

“Teacher expectancy” is a very different beast in the information literacy classroom. I wanted to measure those expectations that teaching librarians were bringing into the classroom. Librarians have completely different sets of expectancies when compared to other
disciplines due to the nature of the one-shot format. Expectations are insidious, less overt, as teaching librarians have little to no connection to the individual student or to the unique micro-community established in the cohort of a semester-long class. There are a multitude of anecdotes that hint at dissatisfaction in teaching librarians; including anecdotes such as the Google effect, “they all want to use Google, they only want to look at the first list of results, they only want to cut and paste.”

There is also the ubiquitous complaint that students only use Wikipedia. Mass media is not a recent problem on the educational scene. As early as 1969, mass communication was seen as a threat to teaching and learning. “Just because mass communication has won such a dominant position in so many areas of our life, we need to work harder.”

In addition to the lack of a meaningful relationship with students, instruction librarians have little to no access to the majority of data that can help us gauge realistic student performance, we are set up to create one-size fits all lesson plans or worse, rely on stereotypes, knowingly or not.

The process of my research has been just as important as the results of my research. This paper is not an isolated event; it is part of an expansive and recursive research agenda lasting many years, a moveable feast trying to unravel the mystery of effective teaching. I’ve been teaching information literacy for Western Michigan University’s (WMU) first year writing program for over five years. In year two of my experience, I realized that something wasn’t working with the one-shot teaching session. My first reaction was, “it’s you, not me.” I launched a study to measure incoming first-year students experience with research and writing in hopes of affirming my suspicions that students were not exposed to research as a discipline. The study did confirm this; however, there was a gross misjudgment on my part in their experience in writing. I opted to look at writing experience and research experience. Reading, research, and writing together create the Venn diagram that defines academic work. I found that a much higher percentage of students were coming into college with little to no experience with writing a formal research paper. This number completely annihilated my unsubstantiated notion that all students wrote papers in high school, basing it off of my own experience from almost 30 years ago. This discovery lead me to rethink how to teach information literacy, not as an isolated or stand-alone discipline reinforced by the one-shot instruction method, but to connect it more closely to the writing process, which ultimately lead to the discovery of rhetoric. Information literacy is another facet of rhetoric, the art of argument and exchange of ideas. This helped me link information literacy to the core mission of higher education, critical thinking. I was then able to (drastically and confidently) restructure the content of my teaching, particularly for WMU’s first year writing course. The most important outcome of this process was that I shifted blame away from the students and highlighted the deficits I brought into the classroom.

What expectancies or bias was I bringing into the classroom that hindered the learning experience and how could I remedy them? Was it a singular instance in me or was did it affect other instructors?

The survey that I launched in the winter of 2014 is somewhat of a by-product of my initial research agenda. I do not want to say after thought, but it wasn’t until late in the research process that I wanted to compare my expectations with those of my colleagues at different institutions. It was the natural progression of the research process. I wanted to find out if there a pattern unique to our discipline or a pattern that confirms the earlier studies on teacher expectancies? Can we predict susceptibility? Is there evidence in disparities in teaching and learning? In the winter of 2014, I developed a questionnaire with 28 questions loosely connected to the “Star Teacher Pre-Screening” test, a 50-question multiple-choice questionnaire designed to identify individuals who possess the known characteristics of successful (who transmit low bias) schoolteachers. I advertised the survey on two information literacy-focused listservs hosted by the American Library Association: ili-l and infolit-l @ lists.ala.org. I wanted to elicit responses from librarians across the country. I limited participation to just
those librarians who teach information literacy in an institution of higher education. The survey is not intended to be definitive; it serves more as an entry into a longer study that I hope to carry out in the near future. The questions are a mix of demographic, questions, and questions measuring teacher attitude. (See appendix A for survey questions.) There were 291 respondents with 225 surveys being valid.

The survey questions relate primarily to teacher confidence and teacher expectations on student preparedness and performance. They have been cross-referenced with variables including age, gender, and education. Holding an additional higher degree does not impact our attitudes on any of the questions, nor does having completed any formal coursework on teaching. Teaching experience beyond that of teaching information in an academic library does affect the responses either. A factor that impacts the survey results in general is time. Age of respondent, time since degree earned, and number of years teaching information literacy seem to have the most impact in creating trends among certain population groups. This confirms the results of the results mentioned earlier in this paper by Babad, et al. that age is the strongest predictor of susceptibility to high bias. Below is a sampling of some of the more relevant results, even if self-reported. Q3, Q4, Q6 measure teacher confidence while Q4, Q10 measure teacher bias.

Of all respondents 79 graduated 1-5 years ago, 49 graduated 6-10 years ago, 33 graduated 11-15 years ago, and 58 graduated 16 or more years ago.

Of all respondents, have taught for 17 have taught less than one year, 83 have taught 2-5 years, 51 6-10 years, 24 11-15 years, and 35 16 or more years.

Of all respondents, 45 identified themselves as belonging to Generation Z, 58 as Millennials, 114 are Gen Xs, 53 Baby Boomers, 2 to the Silent Generation, and 11 self-identified as other.

FIGURE 1
Data Summary of Q 18 “When did you complete your masters in library science?”

<table>
<thead>
<tr>
<th>Answer Choices</th>
<th>Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5 years ago (1)</td>
<td>36.91% 79</td>
</tr>
<tr>
<td>6-10 years ago (2)</td>
<td>22.27% 49</td>
</tr>
<tr>
<td>11-15 years ago (3)</td>
<td>15.60% 33</td>
</tr>
<tr>
<td>16 + years ago (4)</td>
<td>26.36% 59</td>
</tr>
<tr>
<td>N/A (5)</td>
<td>0.35% 1</td>
</tr>
<tr>
<td>Total</td>
<td>229</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Basic Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
</tr>
<tr>
<td>Maximum</td>
</tr>
<tr>
<td>Median</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>Standard Deviation</td>
</tr>
</tbody>
</table>

FIGURE 2
Data Summary of Q21. “How long have you been teaching information literacy?”

<table>
<thead>
<tr>
<th>Answer Choices</th>
<th>Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than one year (1)</td>
<td>7.23% 17</td>
</tr>
<tr>
<td>2-5 years (2)</td>
<td>37.73% 83</td>
</tr>
<tr>
<td>6-10 years (3)</td>
<td>23.18% 51</td>
</tr>
<tr>
<td>11-15 years (4)</td>
<td>15.40% 34</td>
</tr>
<tr>
<td>16 plus years (5)</td>
<td>15.91% 35</td>
</tr>
<tr>
<td>Total</td>
<td>229</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Basic Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
</tr>
<tr>
<td>Maximum</td>
</tr>
<tr>
<td>Median</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>Standard Deviation</td>
</tr>
</tbody>
</table>
Teacher Confidence

In looking at the data summaries of Q3, “I have realistic expectations regarding incoming student IL proficiencies” by years teaching and years since degree earned, we get very similar results. Time increases the likelihood that a teacher is susceptible to transmitting high bias in the classroom. We are split fairly equally with a 60/40 split between agreeing or disagreeing with Q3’s statement. That split closes to a 50/50 split the more recent a librarian has receive her degree.
FIGURE 5
Data Summary of Q3. “I have realistic expectations regarding incoming student IL proficiencies.” By generation

<table>
<thead>
<tr>
<th>Generation</th>
<th>Strongly agree (1)</th>
<th>Agree (2)</th>
<th>Disagree (3)</th>
<th>Strongly disagree (4)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gen Z</td>
<td>25.00%</td>
<td>75.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>1</td>
</tr>
<tr>
<td>Millennials</td>
<td>31.03%</td>
<td>69.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>18</td>
</tr>
<tr>
<td>Gen X</td>
<td>35.99%</td>
<td>63.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>41</td>
</tr>
<tr>
<td>Baby Boomers</td>
<td>22.04%</td>
<td>77.20%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>12</td>
</tr>
<tr>
<td>Silent Generation</td>
<td>0.00%</td>
<td>100.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0</td>
</tr>
<tr>
<td>Other None</td>
<td>36.36%</td>
<td>63.64%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>4</td>
</tr>
<tr>
<td>Total Respondents</td>
<td>87</td>
<td>142</td>
<td>0</td>
<td>0</td>
<td>219</td>
</tr>
</tbody>
</table>

Basic Statistics

<table>
<thead>
<tr>
<th>Generation</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gen Z</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Millennials</td>
<td>1.00</td>
<td>3.00</td>
<td>2.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Gen X</td>
<td>1.00</td>
<td>3.00</td>
<td>2.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Baby Boomers</td>
<td>1.00</td>
<td>3.00</td>
<td>2.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Silent Generation</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Other None</td>
<td>1.00</td>
<td>3.00</td>
<td>2.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

FIGURE 6
Data Summary of Q3. “I have realistic expectations regarding incoming student IL proficiencies.” By number of years teaching

<table>
<thead>
<tr>
<th>Years Teaching</th>
<th>Strongly agree (1)</th>
<th>Agree (2)</th>
<th>Disagree (3)</th>
<th>Strongly disagree (4)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than one year</td>
<td>36.29%</td>
<td>63.71%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>6</td>
</tr>
<tr>
<td>2-5 years</td>
<td>25.00%</td>
<td>75.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>19</td>
</tr>
<tr>
<td>6-10 years</td>
<td>27.46%</td>
<td>72.54%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>14</td>
</tr>
<tr>
<td>11-15 years</td>
<td>38.04%</td>
<td>61.96%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>13</td>
</tr>
<tr>
<td>16+ years</td>
<td>48.71%</td>
<td>51.29%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>16</td>
</tr>
<tr>
<td>Total Respondents</td>
<td>68</td>
<td>142</td>
<td>10</td>
<td>2</td>
<td>220</td>
</tr>
</tbody>
</table>

Basic Statistics

<table>
<thead>
<tr>
<th>Years Teaching</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than one year</td>
<td>1.00</td>
<td>3.00</td>
<td>2.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2-5 years</td>
<td>1.00</td>
<td>3.00</td>
<td>2.00</td>
<td>0.00</td>
</tr>
<tr>
<td>6-10 years</td>
<td>1.00</td>
<td>3.00</td>
<td>2.00</td>
<td>0.00</td>
</tr>
<tr>
<td>11-15 years</td>
<td>1.00</td>
<td>3.00</td>
<td>2.00</td>
<td>0.00</td>
</tr>
<tr>
<td>16+ years</td>
<td>1.00</td>
<td>3.00</td>
<td>2.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

FIGURE 7
Graph of Q6. “I am confident in my understanding of student learning.” By years since degree earned

![Graph of Q6](image-url)
and by years teaching. When looking at Q3 by age of respondent, we get very similar results. Time teaching seems to increase the likelihood that a teacher is susceptible to higher bias. As a discipline, there is not dominant opinion. Q3 by age show strong teacher confidence. Another interpretation of the close split in opinion is that there is no dominant attitude in the discipline.

It appears from the results that teacher confidence is always in flux as seen in the results from Q6. “I am confident in my understanding of student learning.” In looking at Q6 cross-referenced by factors of time (years since degree earned, years teaching, and age), there seems to be a dip in confidence mid-career. This doesn’t mean that teacher confidence and teacher bias is non-existent in the earlier years of a librarian’s career. Q6, when cross-referenced by years teaching, shows a downward trend in teacher confidence. Q6 cross-referenced by age shows a gradual decline in teacher confidence the older the teacher is. (See figure 10.) This question tells us that teachers feel that they are confident in their understanding of student learning, but when compared to Q3, regarding realistic expectations, there is a disparity. How can we as a discipline be so confident in understanding student learning if our expectations vary so widely? This confidence rate increases over time since degree earned.

Education and professional development is a factor to consider. 60% percent of respondents have had formal coursework on some aspect of teaching. The questions with the most significantly different responses from the survey related to teacher confidence when analyzed by respondents having had formal coursework on teaching. Confidence drops significantly with teachers who did not report having had formal coursework.

Teacher Expectations On Student Preparedness and Performance

In reviewing the data of Q4. “All incoming freshmen should be capable of demonstrating a basic level of proficiency in IL” by years since degree earned. In looking at teacher expectations of in coming high school students, responses are split between agree or
FIGURE 9
Data Summary of Q6. “I am confident in my understanding of student learning.”
By number of years teaching

<table>
<thead>
<tr>
<th></th>
<th>Strongly agree</th>
<th>Agree</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than one year</td>
<td>22.53%</td>
<td>58.82%</td>
<td>17.66%</td>
<td>0.80%</td>
<td>17</td>
</tr>
<tr>
<td>2-5 years</td>
<td>11.67%</td>
<td>66.39%</td>
<td>20.72%</td>
<td>2.29%</td>
<td>92</td>
</tr>
<tr>
<td>6-15 years</td>
<td>20.57%</td>
<td>60.70%</td>
<td>17.65%</td>
<td>0.80%</td>
<td>51</td>
</tr>
<tr>
<td>11-15 years</td>
<td>19.03%</td>
<td>70.47%</td>
<td>7.94%</td>
<td>0.60%</td>
<td>34</td>
</tr>
<tr>
<td>16+ plus years</td>
<td>20.57%</td>
<td>57.54%</td>
<td>14.29%</td>
<td>0.60%</td>
<td>35</td>
</tr>
<tr>
<td>Total Respondents</td>
<td>45</td>
<td>137</td>
<td>35</td>
<td>1</td>
<td>219</td>
</tr>
</tbody>
</table>

Basic Statistics

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Maximum</th>
<th>Median</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than one year</td>
<td>1.00</td>
<td>3.00</td>
<td>2.00</td>
<td>1.94</td>
<td>0.64</td>
</tr>
<tr>
<td>2-5 years</td>
<td>1.00</td>
<td>4.00</td>
<td>2.00</td>
<td>2.06</td>
<td>0.65</td>
</tr>
<tr>
<td>6-15 years</td>
<td>1.00</td>
<td>3.00</td>
<td>2.00</td>
<td>1.96</td>
<td>0.62</td>
</tr>
<tr>
<td>11-15 years</td>
<td>1.00</td>
<td>3.00</td>
<td>2.00</td>
<td>1.02</td>
<td>0.45</td>
</tr>
<tr>
<td>16+ plus years</td>
<td>1.00</td>
<td>3.00</td>
<td>2.00</td>
<td>1.86</td>
<td>0.64</td>
</tr>
</tbody>
</table>

FIGURE 10
Data Summary of Q6. “I am confident in my understanding of student learning.”
By generation

<table>
<thead>
<tr>
<th></th>
<th>Strongly agree</th>
<th>Agree</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gen Z</td>
<td>25.00%</td>
<td>75.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>4</td>
</tr>
<tr>
<td>Millennials</td>
<td>15.76%</td>
<td>70.18%</td>
<td>12.12%</td>
<td>1.75%</td>
<td>57</td>
</tr>
<tr>
<td>Gen X</td>
<td>23.63%</td>
<td>66.53%</td>
<td>10.84%</td>
<td>0.70%</td>
<td>114</td>
</tr>
<tr>
<td>Baby Boomers</td>
<td>20.14%</td>
<td>62.26%</td>
<td>16.60%</td>
<td>0.00%</td>
<td>53</td>
</tr>
<tr>
<td>Silent Generation</td>
<td>59.00%</td>
<td>0.00%</td>
<td>50.00%</td>
<td>0.00%</td>
<td>2</td>
</tr>
<tr>
<td>Other Alone</td>
<td>45.55%</td>
<td>27.27%</td>
<td>27.27%</td>
<td>0.00%</td>
<td>11</td>
</tr>
<tr>
<td>Total Respondents</td>
<td>45</td>
<td>136</td>
<td>35</td>
<td>1</td>
<td>217</td>
</tr>
</tbody>
</table>

Basic Statistics

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Maximum</th>
<th>Median</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gen Z</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>1.75</td>
<td>0.43</td>
</tr>
<tr>
<td>Millennials</td>
<td>1.00</td>
<td>4.00</td>
<td>2.00</td>
<td>2.00</td>
<td>0.59</td>
</tr>
<tr>
<td>Gen X</td>
<td>1.00</td>
<td>3.00</td>
<td>2.00</td>
<td>1.92</td>
<td>0.62</td>
</tr>
<tr>
<td>Baby Boomers</td>
<td>1.00</td>
<td>3.00</td>
<td>2.00</td>
<td>1.96</td>
<td>0.61</td>
</tr>
<tr>
<td>Silent Generation</td>
<td>1.00</td>
<td>3.00</td>
<td>2.00</td>
<td>2.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Other Alone</td>
<td>1.00</td>
<td>3.00</td>
<td>2.00</td>
<td>1.82</td>
<td>0.83</td>
</tr>
</tbody>
</table>
FIGURE 12
Data Summary of Q4. “All incoming freshmen should be capable of demonstrating a basic level of proficiency in IL.” By years since degree earned

<table>
<thead>
<tr>
<th></th>
<th>Strongly agree (1)</th>
<th>Agree (2)</th>
<th>Disagree (3)</th>
<th>Strongly Disagree (4)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5 years ago</td>
<td>15.19%</td>
<td>37.97%</td>
<td>45.57%</td>
<td>1.27%</td>
<td>79</td>
</tr>
<tr>
<td>6-10 years ago</td>
<td>10.20%</td>
<td>55.10%</td>
<td>34.69%</td>
<td>0.00%</td>
<td>49</td>
</tr>
<tr>
<td>11-15 years ago</td>
<td>21.21%</td>
<td>45.45%</td>
<td>30.30%</td>
<td>3.03%</td>
<td>33</td>
</tr>
<tr>
<td>16 + years ago</td>
<td>10.34%</td>
<td>53.45%</td>
<td>32.76%</td>
<td>3.45%</td>
<td>58</td>
</tr>
<tr>
<td>N/A</td>
<td>0.00%</td>
<td>0.00%</td>
<td>100.00%</td>
<td>0.00%</td>
<td>1</td>
</tr>
<tr>
<td>Total Respondents</td>
<td>30</td>
<td>103</td>
<td>83</td>
<td>4</td>
<td>220</td>
</tr>
</tbody>
</table>

Basic Statistics

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Maximum</th>
<th>Median</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5 years ago</td>
<td>1.00</td>
<td>4.00</td>
<td>2.00</td>
<td>2.33</td>
<td>0.74</td>
</tr>
<tr>
<td>6-10 years ago</td>
<td>1.00</td>
<td>3.00</td>
<td>2.00</td>
<td>2.24</td>
<td>0.62</td>
</tr>
<tr>
<td>11-15 years ago</td>
<td>1.00</td>
<td>4.00</td>
<td>2.00</td>
<td>2.15</td>
<td>0.78</td>
</tr>
<tr>
<td>16 + years ago</td>
<td>1.00</td>
<td>4.00</td>
<td>2.00</td>
<td>2.29</td>
<td>0.70</td>
</tr>
<tr>
<td>N/A</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
disagree when cross-reference with three different variables, those of number of years teaching, years since degree earned, and age of teacher. The responses are rather equally split between positive and negative views of student preparedness. The split hovers near 60/40, except that drops closer to 50/50 for newer, younger instructors. As a discipline, there is not dominant opinion as to the preparedness of incoming students, which means this attitude is very susceptible to teacher bias.

In reviewing the data of Q10, “A student has a certain amount of intelligence and teachers really can’t do much to change it” by number of years teaching, there is a definite increase in teacher expectancy the longer the respondent has taught. When analyzing Q10 by generation or age of respondent. The results are much more unified when analyzing teacher expectancies by generation an do not follow the same increase as seen when analyzing Q10 by number of years teaching, shown in figure 14. When looking at Q10 by years since degree earned.

Other Results that Need to be Looked at More Closely

Due to time and space constraints for the ACRL conference, I was not able to explore all of the results as closely as they deserved. For example, a few qus-
Kill the Stigma! Teacher Expectancy in the Information Literacy Classroom

March 25–28, 2015, Portland, Oregon

FIGURE 15
Data Summary of Q10. “A student has a certain amount of intelligence and teachers really can’t do much to change it.” By number of years teaching.

<table>
<thead>
<tr>
<th></th>
<th>Strongly agree (1)</th>
<th>Agree (2)</th>
<th>Disagree (3)</th>
<th>Strongly Disagree (4)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than one year</td>
<td>0.69%</td>
<td>0</td>
<td>62.58%</td>
<td>27.78%</td>
<td>16</td>
</tr>
<tr>
<td>2–5 years</td>
<td>1.25%</td>
<td>12.25%</td>
<td>63.84%</td>
<td>25.91%</td>
<td>62</td>
</tr>
<tr>
<td>6–10 years</td>
<td>0.59%</td>
<td>11.76%</td>
<td>37.5%</td>
<td>51.49%</td>
<td>81</td>
</tr>
<tr>
<td>11–15 years</td>
<td>0.75%</td>
<td>23.33%</td>
<td>52.78%</td>
<td>25.34%</td>
<td>55</td>
</tr>
<tr>
<td>16+ years</td>
<td>0.71%</td>
<td>33.33%</td>
<td>51.79%</td>
<td>25.34%</td>
<td>85</td>
</tr>
<tr>
<td>Total Respondents</td>
<td>1</td>
<td>32</td>
<td>135</td>
<td>53</td>
<td>218</td>
</tr>
</tbody>
</table>

FIGURE 16
Data Summary of Q10. “A student has a certain amount of intelligence and teachers really can’t do much to change it.” By generation or age.

<table>
<thead>
<tr>
<th>Generation</th>
<th>Strongly agree (1)</th>
<th>Agree (2)</th>
<th>Disagree (3)</th>
<th>Strongly Disagree (4)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q20: Generation Z (typically born between 1955-1980)</td>
<td>0.69%</td>
<td>25.00%</td>
<td>37.50%</td>
<td>27.00%</td>
<td>4</td>
</tr>
<tr>
<td>Q21: Baby Boomer Generation (typically born between 1943-1960)</td>
<td>0.69%</td>
<td>25.00%</td>
<td>52.78%</td>
<td>25.34%</td>
<td>85</td>
</tr>
<tr>
<td>Q22: Silent Generation (typically born between 1925-1942)</td>
<td>0.69%</td>
<td>25.00%</td>
<td>51.79%</td>
<td>25.34%</td>
<td>85</td>
</tr>
<tr>
<td>Q23: Other None</td>
<td>0.69%</td>
<td>25.00%</td>
<td>51.79%</td>
<td>25.34%</td>
<td>53</td>
</tr>
<tr>
<td>Total Respondents</td>
<td>1</td>
<td>10</td>
<td>142</td>
<td>49</td>
<td>216</td>
</tr>
</tbody>
</table>

FIGURE 17
Graph of Q10. “A student has a certain amount of intelligence and teachers really can’t do much to change it” by years since degree earned.
tions that I would like to explore more closely in future publications include teacher attitudes on how we measure student preparedness. What data do we need in order to assess incoming students? A discrepancy that I would like to explore more closely is that the majority of respondents state that there are many factors that contribute to student learning, either positively or negatively, (Q 9). However, when asked if it is important to look at prior academic achievement in order to effectively assess actual student preparedness (Q5), the majority of respondents say no. What factors do we consider to be important in assessing student preparedness?

Conclusion

If critical thinking is “a mix of intelligent behavior, informed decision making, and problem solving,” then one can conclude that critical thinking is the core of teaching information literacy. They are both processes synonymous with “intellectual aggressiveness.” The fact that our discipline is being dominated by a conversation on the restructuring of learning outcomes in the new framework is evidence that we value critical thinking. No matter how information literacy is measured, how skills are grouped or regrouped, or if knowledge execution is considered a stand-alone skill or holistic competency, it remains a process of problem solving. As teachers we need to modify those processes for the actual needs of the class or student and identify those dispositions that are relevant to the class and adapt the lesson plan accordingly. I end with a series of questions in hopes of guiding us as individual teachers and as a profession towards a meaningful reflection on our roles as teachers in a higher education classroom for information literacy and on the role of critical thinking for student formation and aptitude. What misconceptions do we inadvertently box up into expectations, which then frustrate us when students are not performing at the right level? Are our own biases stalling our best intentions at the gate? What dispositions of critical thinking and of the framework are we focusing on? What is the normative level of expectation and achievement? How are we measuring those levels? How do we minimize negative (Golem) effects and maximize positive (Galatea) effects? Are we as teaching faculty further handicapping students by maintaining a curriculum that teaches to desired performance rather than actual performance? Is this even the right approach? Are there other interventions to eradicate teacher expectation? Perhaps awareness alone is a good first step. These unarticulated expectations and unmeasured performance levels risk manifesting themselves into a disconnected and meaningless curriculum. I want to know if we can measure these expectancies effectively in order to develop a better curriculum for better thinkers. These ideas and questions are the start of a conversation with many people, my colleagues at my institution and with my instruction librarian colleagues across the country. I don’t pretend to hold answers or present finite data. I had a question and I was curious so I pursued it in hopes of learning more, growing my understanding of the complex structure we call higher education.
Appendix A. Survey Questions

1. I am effective in teaching IL to students of any level.
 A. Strongly agree
 B. Agree
 C. Disagree
 D. Strongly Disagree

2. I have realistic expectations regarding incoming student IL proficiencies.
 A. Strongly agree
 B. Agree
 C. Disagree
 D. Strongly Disagree

3. All incoming freshmen should be capable of demonstrating a basic level of competency in IL.
 A. Strongly agree
 B. Agree
 C. Disagree
 D. Strongly Disagree

4. I believe it is important to have access to student academic achievement data (such as H.S. GPAs, SAT or ACT scores) in order to be an effective teacher.
 A. Strongly agree
 B. Agree
 C. Disagree
 D. Strongly Disagree

5. I am confident in my understanding of student learning.
 A. Strongly agree
 B. Agree
 C. Disagree
 D. Strongly Disagree

6. There are factors that contribute to or create disparities in student learning.
 A. Strongly agree
 B. Agree

7. In my teaching my practices, I am inclusive of different learning abilities and styles.
 A. Strongly agree
 B. Agree
 C. Disagree
 D. Strongly Disagree

8. Which of the following could impact student achievement? Mark all that apply
 A. Race
 B. Gender
 C. Age
 D. Income level
 E. Confidence of student
 F. Confidence of teacher
 G. Parental support
 H. Institutional support
 I. Peer support
 J. Innate intelligence
 K. Ability of teacher
 L. Other, please describe
 M. None of the above
 N. Other

9. A student has a certain amount of intelligence, and teachers really can’t do much to change it.
 A. Strongly agree
 B. Agree
 C. Disagree
 D. Strongly Disagree

10. A person’s intelligence is something that can’t change very much.
 A. Strongly agree
 B. Agree
 C. Disagree
 D. Strongly Disagree
11. A person can learn new things, but can’t really change their basic intelligence.
 A. Strongly agree
 B. Agree
 C. Disagree
 D. Strongly Disagree

12. I believe that professional development will have a significant impact on my teachings and interactions with students.
 A. Strongly agree
 B. Agree
 C. Disagree
 D. Strongly Disagree

13. Which of the following best describes your institution of higher learning?
 A. Doctorate granting research university
 B. Master’s college or university
 C. Baccalaureate college
 D. Associate's college
 E. Other special focus institution, including tribal institutions
 F. not classified
 G. not sure

14. Is your school:
 A. private
 B. public
 C. for-profit
 D. other

15. Have you ever taken any formal course on any aspect of teaching (classroom management, pedagogy, internships, etc…) at the graduate or upper-level undergraduate level?
 A. Yes
 B. No

16. Have you at any point in your academic or professional career taken formal coursework on any aspect of teaching?
 A. Yes
 B. No

17. Does your institutions make student data available?
 A. Yes
 B. No
 C. I don’t know

18. When did you complete your MLIS, MLS, or MA in LIS?
 A. 1-5 years ago
 B. 6-10 years ago
 C. 11-15 years ago
 D. 16 + years ago
 E. N/A

19. Do you hold an addition graduate degree?
 A. Yes
 B. No

20. Is teaching IL your primary function at the library?
 A. Yes
 B. No, and it represents a small portion of my position.
 C. No, but it represents large percentage of my position.

21. Please indicate the number of years you have taught IL at the university/college level.
 A. less than one year
 B. 2 -5 years
 C. 6-10 years
 D. 11-15 years
 E. 15 plus years

22. Do you have teaching experience beyond IL in academic libraries?
 A. Yes
 B. No

23. When you were in high school did you required to write a research paper?
 A. Yes
 B. No
 C. Don’t remember
24. Have you ever taken advantage of professional development activities related to teaching?
 A. Yes
 B. No
If yes, please list who provided the training and what the topic was.

25. With which of the following groups do you most identify?
 A. Gen Z
 B. Millennial
 C. Baby Boomer
 D. Silent Generation
 E. None/Other

26. Gender
 A. Male
 B. Female
 C. Transgender
 D. Prefer not to respond
 E. Other

27. With which of the following groups do you most identify?
 A. African American/Black
 B. Asian/Pacific Islander
 C. Hispanic/Latino
 D. Multiracial
 E. Native American/American Indian
 F. White
 G. Not Listed (please specify)

Notes
1. Arthur W. Combs, Myths in Education: Beliefs that Hinder Progress and their Alternatives (Boston, MA: Allyn and Bacon, 1979), 110.

26. I wonder if the term “metalliteracy” isn’t a modern adaptation of the concept of “critical thinking. The prefix meta seems to be in vogue of late, used to indicate a certain higher order of problem solving and reflective thinking and adaptive knowledge execution that in my mind describes the recursive nature of critical thinking.

28. Goheen, Human Nature of a University, 42.

29. Ibid, 43.

32. Gohen, The Human Nature of a University, 80.

33. Arum and Roksa, Academically Adrift, 126.

34. Ibid, 3-4.

41. In reviewing the extensive corpus of literature dedicated to the study of information literacy, the majority of research has focused on measuring and assessing student performance rather than teacher performance. There is far less literature that assesses the performance of the instructor. A recent study by Heidi Julien and Shelagh K. Genuis report the findings of a national survey on teaching librarians. This summary reports that librarians struggle with their professional identity as a teacher. Heidi Julien and Shelagh K. Genuis’ ‘Librarians’ Experiences of the Teaching Role: A National Survey of Librarians,’ Library & Information Science Research 33, no. 2 (2011): 103-111, doi: 10.1016/j.lisr.2010.09.005.

43. Goheen, The Human Nature of a University, 89.

45. When it came to demographics and more specifically age, I opted to solicit responses about generational identity. I felt that, with the current research of learning styles and attitude difference highlighting generational differences, it would be more appropriate to look how someone identifies him or herself. This did cause a little confusion but it does offer some insight into the traits of people working in our discipline. For more information on the characteristics of different generations, see Dianna G. Oblinger and James L. Oblinger, “Educating the Net Generation,” (2005): 29, https://net.educause.edu/ir/library/pdf/pub7101.pdf

46. Combs, Myths in Education, 79.

Bibliography

Rosenthal, Robert. "Interpersonal Expectancy Effects: A 30-Year Perspective." *Current Directions in Psychological Science* 3,

